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The Orthomodular Poset of Projections
of A Symmetric Lattices

Georges Chevalier1

In a Hilbert space, there exists a natural correspondence between continuous projections
and particular pairs of closed subspaces. In this paper, we generalize this situation and
associate to a symmetric lattice L a subset P (L) of L × L, called its projection poset.
If L is the lattice of closed subspaces of a topological vector space then elements of
P (L) correspond to continuous projections and we prove that automorphisms of P (L)
are determined by automorphisms of the lattice L when this lattice satisfies some basic
properties of lattices of closed subspaces.
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1. INTRODUCTION

If H is a Hilbert space then there exists a natural correspondence between or-
thogonal projections defined on H and closed subspaces of H : to every projection
p is associated its image Im p = p(H ). Now if p is a not necessarily orthogonal
projection (called a projection or a linear projection in the sequel) then p is deter-
mined by the pair (Im p, Ker p) of closed subspaces; and so there exists a bijection
between the set of all projections and a subset P (C(H )) of C(H ) × C(H ), where
C(H ) denotes the orthomodular lattice (abbreviated OML) of closed subspaces
of H .

A purpose of this paper is to generalize the above situation and associate to
certain lattices L a subset P (L) of L × L which is called its projection poset. When
L is the lattice of all subspaces of a vector space E then P (L) is isomorphic to the
poset of all linear projections defined on E and we obtain a continuous version of
this result which can be, roughly speaking, stated as follows: if L is the lattice of
closed subspaces of a topological vector space E then P (L) is isomorphic to the
poset of continuous linear projections defined on E.
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An origin of this work is a paper by Ovchinnikov (1993) in which the author
determines the automorphism group of the poset of projections defined on a
Hilbert space by means of automorphisms and antiautomorphisms of the lattice of
all closed subspaces of H . We prove, in a second part of the paper, that this result
can be extended to an abstract projection poset P (L) if L is a lattice satisfying
some basic properties of lattices of closed subspaces.

Information about the lattice concepts used in this paper may be found in K
othe (1969), Maeda and Maeda (1970) is a good reference for topological vector
spaces.

2. THE ORTHOMODULAR POSET OF PROJECTIONS OF A LATTICE

2.1. Definition and Structure

Let a and b be two elements of a lattice L. We say that (a, b) is a modular
pair, and write (a, b)M , when

(x ∨ a) ∧ b = x ∨ (a ∧ b) for every x ≤ b.

If (a, b)M holds in the dual lattice L∗ of L, we say that (a, b) is a dual-modular
pair and write (a, b)M∗.

A lattice L is said to be M-symmetric if (a, b)M implies (b, a)M and M∗-
symmetric if L∗ is M-symmetric. A symmetric lattice is lattice which is a M-
symmetric and M∗-symmetric lattice.

Let L be a symmetric lattice with 0 and 1. The direct product of L and L∗ is
also a lattice and the set of all elements (a, b) of L × L∗ such that in the lattice L,

a ∨ b = 1, a ∧ b = 0, (a, b)M, (a, b)M∗

is called the projection poset of L. This poset is denoted by P (L) and any element
of P (L) is called a projection of L.

If (a, b) is a projection of L then, as L is a symmetric lattice, (b, a) is
also a projection and we write (b, a) = (a, b)⊥. The first claim of the following
proposition is proved in Mushtari (1998). It is also a consequence of more general
results of Harding (1996).

Proposition 1. If L is a symmetric lattice with 0 and 1 then (P (L),≤,⊥) is an
orthomodular poset (abbreviated OMP). If L possesses a structure of OMP then
this OMP is naturally isomorphic to a suborthomodular poset of P (L).

Proof: It is clear that (0, 1) is the least element of P (L) and (1, 0) the greatest
element. It is also evident that (a, b)⊥⊥ = (a, b) and that (a, b) ≤ (c, d) implies
(c, d)⊥ ≤ (a, b)⊥.

For two projections (a, b) and (c, d), we write (a, b) ⊥ (c, d) if (a, b) ≤
(c, d)⊥ and we must prove that (a, b) ⊥ (c, d) implies that (a, b) ∨ (c, d) exists.
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As in L × L∗, (a, b) ∨ (c, d) = (a ∨ c, b ∧ d), it suffices to prove that (a ∨ c, b ∧
d) ∈ P (L). This result will be an easy consequence of the following technical
lemma. �

Lemma 1. If a �= 0, b, c, d �= 1 are different elements of a bounded lattice L

such that:

(a) a ∧ b = c ∧ d = 0, a ∨ b = c ∨ d = 1, a ≤ d, b ≥ c;
(b) (a, b)M , (b, a)M∗, (c, d)M , (d, c)M∗

then

1. B = {0, 1, a, b, c, d, b ∧ d, a ∨ c} is a distributive sublattice of L which
is a 23-element Boolean lattice;

2. (a, c)M , (c, a)M , (a, b ∧ d)M , (b ∧ d, a)M , (c, b ∧ d)M , b ∧ d, c)M ,
(a ∨ c, d)M , (a ∨ c, b)M , (d, b)M , (c, d)M , (a ∨ c, b ∧ d)M;

3. (a, c)M∗, (c, a)M∗, (b ∧ d, a)M∗, (b ∧ d, c)M∗, (a ∨ c, b)M∗, (b, a ∨
c)M∗, (a ∨ c, d)M∗, (d, a ∨ c)M∗, (d, b)M∗, (b, d)M∗, (b ∧ d, a ∨
c)M∗.

If moreover, L is a symmetric lattice then (x, y)M and (x, y)M∗ hold in L for
every pair (x, y) of elements of B.

proof:

1. By (d, c)M∗ and c ≤ b we have

(a ∨ c) ∨ (b ∧ d) = a ∨ [c ∨ (b ∧ d)]

= a ∨ [b ∧ (c ∨ d)] = a ∨ (b ∧ 1) = a ∨ b = 1.

Similarly, (a, b)M and c ≤ b yield (a ∨ c) ∧ (b ∧ d) = 0. By using
(c, d)M and a ≤ d, we have:

(a ∨ c) ∧ d = a ∨ (c ∧ d) = a

and the proofs of b = (b ∧ d) ∨ c, d = (b ∧ d) ∨ a, and c = (a ∨ c) ∧ b

are similar.
Now, it is easy to check that B = {0, 1, a, b, c, d, b ∧ c, a ∨ d} is a

23 element sublattice of L. In this lattice, {a, c, b ∧ d} is the set of all
atoms, {d, b, a ∨ c} the set of all coatoms and B can be equipped of a
structure of Boolean lattice.

2. Many proofs of (2) are similar. We will give only an example.
Let x ≤ b ∧ d. By using (c, d)M , x ∨ a ≤ d and (a, b)M , x ≤ b, we

can write:

(x ∨ a ∨ c) ∧ (b ∧ d) = [(x ∨ a ∨ c) ∧ d] ∧ b = [(x ∨ a) ∨ (c ∧ d)] ∧ b
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= (x ∨ a) ∧ b = x ∨ (a ∧ b) = x

= x ∨ [(a ∨ c) ∧ (b ∧ d)]

and thus (a ∨ c, b ∧ d)M holds.
3. It suffices to apply the results of (2) in L∗.

Now we return to the proof of the proposition and prove that P (L) satisfies
the orthomodular law. Assume that, for two projections (a, b) and (c, d) we have
(a, b) ≤ (c, d), that is a ≤ c and b ≥ d. Using Lemma 1, we have

(a, b) ∨ [(a, b)⊥ ∧ (c, d)] = (a, b) ∨ [(b, a) ∧ (c, d)] = (a, b) ∨ (b ∧ c, a ∨ d)

= (a ∨ (b ∧ c), b ∧ (a ∨ d)) = (c, d)

and the orthomodular law is satisfied.
If L is an OMP for an orthocomplementation x 
→ x�, consider the mapping

ϕ : L 
→ L × L∗ defined by ϕ(x) = (x, x�). Since L is an OMP, (a, a�)M and
(a, a�)M∗ hold for every a ∈ L and thus ϕ(L) ⊂ P (L). We have a ≤ b if and only
if ϕ(a) ≤ ϕ(b) and ϕ(a�) = (a�, a) = (a, a�)⊥ = ϕ(a)⊥. Therefore, the OMP L

is isomorphic to ϕ(L).
The proof is complete.

2.2. Examples

1. Let E be a vector space. The lattice L of all subspaces of E is
a complete modular lattice and P (L) = {(F,G) ∈ L2 | F ⊕ G = E}.
An element (F,G) of P (L) can be identified with the linear pro-
jection p : E 
→ E such that Im p = F and Ker p = G and the set
of all linear projections of the vector space E is an OMP naturally
isomorphic isomorphic to P (L) by the correspondence p 
→ (Im p,

Ker p).
2. For n ∈ N, n ≥ 3, let Ln be the lattice of all subspaces of the vec-

tor space C
n. It is proved in Chevalier (2000) that there exists 22ℵ0

nonisomorphic structures of orthomodular lattices on Ln and there-
fore there exists 22ℵ0 nonisomorphic suborthomodular posets in the
projection lattice P (Ln). Each of them has an underlying lattice
isomorphic to Ln.

3. Let L be a complete modular complemented lattice which is upper-
continuous (For example, L is a continuous geometry or the lat-
tice of Example 1). It is proved in Chevalier (1999) that P (L) is
an OMP satisfying the maximality principle. This means that every
generalized Sasaki projection is non empty. In such OMPs, many
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properties of ideals generalize properties of ideals in OMLs (Chevalier,
1999).

Remark. Our purpose, in the definition of the projection poset P (L) of a lattice
L, is to determine when L is the lattice of all closed subspaces of a topolog-
ical vector space E, a poset isomorphic to the poset of all continuous linear
projections defined on E. As a continuous linear projection is determined by
an ordered decomposition of E in a topological direct sum of two closed sub-
spaces, the conditions imposed in the definition of P (L) can be justified as
follows:

1. On the set of all projections of a vector space, and more generally on the set
of all idempotents of a unitary ring, there exist an usual order relation and
an usual orthocomplementation which are defined as follows. If p and q are
two linear projections then p ≤ q means p = qp = pq and is equivalent
to Im p ⊂ Im q, Ker p ⊃ Ker q. On the other hand, p⊥ = 1 − p and
Im (1 − p) = Ker p, Ker(1 − p) = Im p. These properties justify that
P (L) is P (L) is considered as a subset of the ordered set L × L∗ and the
definition (a, b)⊥ = (b, a).

2. Condition a ∧ b = 0 is clear since, in lattices of closed subspaces, a ∧ b =
a ∩ b.

3. a ∨ b = 1 and (a, b)M∗ is, for subspaces, generally equivalent to a + b =
1 (Mackey, 1945, Theorem III-6, Maeda and Maeda, 1970, Lemma 31.1,
Holland, 1964, Theorem 2).

Therefore, the previous two conditions force a ⊕ b = 1 if a and b

are subspaces.
4. Many lattices of closed subspaces are symmetric (Mackey, 1945, Corollary

4 of Theorem III-6 and Corollary 2 of Theorem III-7). Another mo-
tivation is the fact that if (a, b) = (Ker p, Im p) then (b, a) = (Im
(1 − p), Ker (1 − p)) and so the two pairs (a, b) (b, a) fulfill the same
properties related to modularity.

5. Condition (a, b)M is the least obvious of all. We will see that this con-
dition forces the direct sum a ⊕ b to be a topological sum or, equiva-
lently, the continuity of the linear projection having a as range and b as
kernel.

An algebraic setting for the lattice properties of the set of all closed subspaces
of a topological vector space is the concept of DAC-lattice and DAC-lattice are
closely related to lattices of closed subspaces of pairs of dual spaces. We will
begin the next number by introducing these two concepts.
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3. DUAL SPACES AND DAC-LATTICES

An AC-lattice is an atomistic lattice with the covering property: if p is
an atom and a ∧ p = 0 then a <· a ∨ p that is a ≤ x ≤ a ∨ p implies a = x or
a ∨ p = x. If L and L∗ are AC-lattices, L is called a DAC-lattice. Any DAC-lattice
is symmetric (Maeda and Maeda, 1970, Theorem 27-6)

Irreducible complete DAC-lattices of length ≥ 4 are representable by lattices
of closed subspaces and many lattices of subspaces are DAC-lattices (Maeda and
Maeda, 1970, Lemma (31.1)). We recall some definitions.

Let E and F be vector spaces over a field K . If there exists a nondegenerate
bilinear form B on E × F , we say that (E,F ) is a pair of dual spaces. For a
subspace A of E we put

A⊥ = {y ∈ F | B(x, y) = 0 for every x ∈ A}.
Similarly, let

B⊥ = {x ∈ E | B(x, y) = 0 for every y ∈ B}
for every subspace B of F . A subspace A of E is called F -closed if A = A⊥⊥ and
the set of all F -closed subspaces, denoted by LF (E) and ordered by set-inclusion,
is a complete irreducible DAC-lattice (Maeda and Maeda, 1970, Theorem (33.4)).
Conversely, for any irreducible complete DAC-lattice L of length ≥ 4, there exists
a pair (E,F ) of dual spaces such that L is isomorphic to the lattice of all F -closed
subspaces of E (Maeda and Maeda, 1970, Theorem 33.7).

The set of all E-closed subspaces of F is similarly defined and is also a
DAC-lattice. The correspondence A 
→ A⊥ is an antiisomorphism between the
lattice of F -closed subspaces of E and the lattice of E-closed subspaces of F .

The notion of pair of dual spaces is closely related to the concept of linear
system introduced by Mackey (1945). Let E be a real vector space and let X

be a subspace of the algebraic dual E∗ of E. The pair (E,X) is called a linear
system; and, if l(x) = 0 for all l ∈ X implies x = 0 then X is said to be total; and
(E,X), equipped with the bilinear form 〈x, l〉 = l(x), x ∈ E, l ∈ X, is naturally
a pair of dual spaces. The definition of a linear system extends to vector spaces
over arbitrary fields and if (E,F ) is a pair of dual spaces for a bilinear form 〈 , 〉
then, since the form is nondegenerate, F is isomorphic to a subspace E∗

F of the
algebraic dual of E and the pair of dual spaces (E,F ) may be identified with the
linear system (E,E∗

F ); and after this identification the bilinear form is the natural
one, (x, l) ∈ E × E∗

F 
→ l(x).
In particular, for every vector space E, (E,E∗) is naturally a pair of dual

spaces and LE∗ (E) coincide with the set of all subspaces of E.

Remarks and examples. (1) If E is a locally convex space then the lattice of all
closed subspaces of E is a DAC-lattice (Maeda and Maeda, 1970, Theorem 31.10);
and if the lattice of all closed subspaces of a Hausdorff topological vector space



The Orthomodular Poset of Projections of A Symmetric Lattices 2079

F over R or C is a DAC-lattice then there exists a locally convex topology on F

leading to the same lattice of closed subspaces (Maeda and Maeda, 1970, Theorem
31.12).

For real or complex vector spaces, the example of the lattice of all subspaces
is not different from the example of the lattice of all closed subspaces of a locally
convex space since on every real or complex vector spaces there exists a locally
convex topology for which every subspace is closed and every linear projection
is continuous (Schaefer, 1966, Example page 36 and Exercise 7 page 69).

(2) Let H be an inner product space for an inner product 〈., .〉. The pair
(H,H ) is a pair of dual spaces but there exists another interesting pair of dual
spaces naturally associated to H , namely the linear system (H,H ′), where H ′ is
the topological dual of H . If H is not complete then H may be identified with a
proper subspace of H ′. If H is a Hilbert space then these two pairs of dual spaces
coincide.

Now we can consider the following problem: if L is the DAC-lattice of F -
closed subspaces of a pair of dual spaces (E,F ) or the DAC-lattice of closed
subspaces of a locally convex vector space, characterize elements of P (L) by
means of linear projections of the vector space E. Roughly speaking, the answer is
lattice projections correspond to linear continuous projections. Note the difference
between the two cases: in one case a topology is given and in the other case we
must define a topology.

3.1. The case of a pair of dual spaces

Let E be a vector space over a field K equipped with the discrete topol-
ogy. A vector space topology on E is said to be a linear space topology
(in the sense of Lefschetz) if 0 has a basis of neighborhoods consisting of
subspaces.

Now let (E,F ) be a pair of dual spaces. The weak linear topology on E, noted
σ (E,F ), is the linear topology defined by taking {G⊥ | G ⊂ F, dim G < ∞} as
a basis of neighborhoods of 0. If F is interpreted as a subspace of the algebraic
dual of E then a subbasis of neighborhoods of 0 is formed by kernels of elements
of F .

The weak linear topology on F , noted σ (F,E), is defined in the same way.
These topologies are Hausdorff and are the coarsest topologies that render the
map (x, y) ∈ E × F 
→ 〈x, y〉 ∈ K separately continuous. Conversely, for any
continuous linear form f on E, there exists y ∈ F such that f (x) = 〈x, y〉 and for
any continuous form g on F , there exists x ∈ E satisfying g(y) = 〈x, y〉. Thus F

can be interpreted as the topological dual of E for the σ (E,F ) topology and E as
the topological dual of F for the σ (F,E) topology.
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Moreover, for a subspace G ⊂ E, we have G = G⊥⊥ and thus to be a closed
subspace is unambiguous (see Kothe (1969), Section 10, for information about
the weak linear topology).

In the particular case F = E∗, every subspace of E is σ (E,E∗)-closed and
every linear mapping f : E 
→ E is σ (E,E∗)-continuous.

The following lemma is a step in the characterization of modular pairs in the
lattice of closed subspaces of a linear system by Mackey (Mackey, 1945, p. 167)

Lemma 2. Let (E,F ) be a pair of dual spaces. For two closed subspaces X

and Y , such that X ∩ Y = {0} and X + Y = E, the following statements are
equivalent.

1. (X, Y ) is a modular pair in the lattices of closed subspaces of E;
2. X⊥ + Y⊥ = F ;
3. For every (f, g) ∈ F 2 there exists h ∈ F such that f (x) = h(x) for all

x ∈ X and g(y) = h(y) for all y ∈ Y .

Proof: (1) ⇔ (2). Condition (1) is equivalent to (X⊥, Y⊥)M∗ in the lattice of
closed subspaces of F . By using (Maeda and Maeda, 1970), Theorem (33.4), we
have (X⊥, Y⊥)M∗ if and only if X⊥ + Y⊥ = X⊥ ∨ Y⊥ and thus:

X⊥ + Y⊥ = X⊥ ∨ Y⊥ = (X ∧ Y )⊥ = (X ∩ Y )⊥ = {0}⊥ = F

Conversely, X⊥ + Y⊥ = F implies X⊥ + Y⊥ = X⊥ ∨ Y⊥.
(2) ⇒ (3). By X⊥ + Y⊥ = F , we have f − g = h1 + h2, h1 ∈ X⊥ and h2 ∈

Y⊥. If h = f − h1 = g + h2 then, as h1(x) = 0 for x ∈ X, f (x) = h(x) for all
x ∈ X and, similarly, g(y) = h(y) for all y ∈ Y .

(3) ⇒ (2). Let f ∈ F . By applying 3) to the pairs (0, f ) and (f, 0),
there exist h1, h2 ∈ F such that f (x) = h1(x), 0 = h2(x) for all x ∈ X and
0 = h1(y), f (y) = h2(y) for all y ∈ Y . We have f = h1 + h2 with h1 ∈ X⊥ and
h2 ∈ Y⊥. �

If (E,F ) is a pair of dual spaces and X, Y are two closed subspaces of
E, we can consider on X × Y the product topology of the σ (E,F ) topology.
If X ∩ Y = {0} and X + Y = E then the mapping T : X × Y 
→ E defined by
T (x, y) = x + y is a continuous bijection and is open if and only if the linear
projection p such that Im p = X and Ker p = Y is continuous (note that T −1 =
(p, 1 − p)).

The next lemma characterizes modular pairs by means of T . See Maeda
and Maeda (1970), Lemma (32.9), for a similar result in locally convex vector
spaces.
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Lemma 3. Let (E,F ) be a pair of dual spaces and X, Y two closed subspaces
of E such that X ∩ Y = {0} and X + Y = E. The pair (X, Y ) is modular in the
lattice of closed subspaces of E if and only if for every continuous form f defined
on X × Y there exists g ∈ F satisfying f = g ◦ T .

Proof: Assume (X, Y )M and let f be a continuous form on X × Y . Define
f1 : X 
→ K , f2 : Y 
→ K by f1(x) = f (x, 0) and f2(x) = f (0, x). The forms
f1 and f2 are continuous and can be extended continuously to E (K othe, 1969,
Section 10, p. 86). We have f (x, y) = f1(x) + f2(y) for every (x, y) ∈ X × Y

and, by lemma 2, there exists g ∈ F such that g = f1 on X and g = f2 on Y . For
(x, y) ∈ X × Y

g ◦ T (x, y) = g(x + y) = g(x) + g(y) = f1(x) + f2(y) = f (x, y)

and therefore f = g ◦ T .
Conversely, assume that for every continuous form f defined on X × Y

there exists g ∈ F satisfying f = g ◦ T . Let (f1, f2) ∈ E2. By definition of the
product topology, (x, y) ∈ X × Y 
→ f1(x) ∈ K and (x, y) ∈ X × Y 
→ f2(y) ∈
K are continuous forms and f = f1 + f2 is continuous. There exists g ∈ F such
that f = g ◦ T and, for every x ∈ X,

f1(x) = f (x, 0) = g ◦ T (x, 0) = g(x).

Similarly, for y ∈ Y , f2(y) = g(y) and Lemma 2 completes the proof. �

Proposition 2. Let (E,F ) be a pair of dual spaces. A linear projection p on E

is σ (E,F )-continuous if and only if (Im p, Ker p) is a modular pair in the lattice
of all closed subspaces of E.

proof: Assume that (Im p, Ker p)M in the lattice of all closed subspaces of E.
Let U = ∩Ker fi × ∩Ker gk , 1 ≤ i ≤ m, 1 ≤ k ≤ n, be a neighborhoods of

0 in Im p × Ker p. Define m + n forms on Im p × Ker p by ϕi(x, y) = fi(x) and
γk(x, y) = (x, y) = gk(y). By definition of the product topology, these forms are
continuous and, by using Lemma 3, there exist �i ∈ F , 1 ≤ i ≤ m, and �k ∈
F , 1 ≤ k ≤ n, such that ϕi = �i ◦ T , γk = �k ◦ T with T : Im p × Ker p 
→ E

defined by T (x, y) = x + y.
Let V = ∩Ker �i ∩ ⋂

Ker �k . This set is a neighborhoods of 0 in E and
T (U ) = V . Therefore, T is open and p is continuous.

Conversely, let p be a continuous linear projection for the σ (E,F )
topology. Consider f ∈ F . Since E = Im p ⊕ Ker p, we have f = f ◦ p +
f ◦ (1 − p) with f ◦ p ∈ (Ker p)⊥ and f ◦ (1 − p) ∈ (Im p)⊥. Therefore, F =
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(Im p)⊥ + (Ker p)⊥ and, by using Lemma 0, the pair (Im p, Ker p) is
modular.

Theorem 1. Let L be a complete irreducible DAC-lattice. If L is representable
as the lattice L of all closed subspaces of a pair of dual spaces (E,F ) then
the projection orthoposets P (L) and P (L) are isomorphic and the correspon-
dence p 
→ (Im p, Ker p) is an isomorphism between the orthomodular poset of
σ (E,F )-continuous linear projections defined on E onto P (L).

proof: It is clear that the isomorphism between the lattices L and L extends to
an isomorphism of their projection orthoposets.

In L, (F,G)M∗ is equivalent to F + G = F ∨ G (Mackey, 1945, Theorem
III-6 or Maeda and Maeda, 1970, Lemma 31.1.5) and therefore, by Proposition
2, the correspondence θ : p 
→ (Im p, Ker p) is a bijection from the set of all
σ (E,F ) continuous linear projections on E onto the projection lattice P (L) of L.
If p is continuous then so is the projection p⊥ = 1 − p and Ker(1 − p) = Im p,
Im(1 − p) = Ker p. Thus θ (p⊥) = θ (p)⊥ holds. For two linear projections p

and q, p ≤ q is defined by p = pq = qp and those relations hold if an only if
Im p ⊂ Im q and Ker q ⊂ Ker p. Therefore, p ≤ q ⇔ θ (p) ≤ θ (q) and θ is an
isomorphism of orthoposets.

Remark Let T be the lattice of all subspaces of E. The orthomodular poset P (L)
is a suborthomodular poset of P (T ) since, for two orthogonal elements (A,B)
and (C,D) in P (L), we have (A,B) ∨ (C,D) = (A + C,B ∩ D).

3.1.1. The case of a locally convex space

Let E be a locally convex space and E′ its topological dual. The weak
topology σs(E,E′) is the coarsest topology on E for which all the elements of
E′ are continuous. Therefore this topology is coarser then the given topology on
E. The weak topology σs(E′, E) is defined on E′ in a similar way and these two
weak topologies are locally convex. The topological dual of E, equipped with
the σs(E,E′) topology, is E′ and the topological dual of E′, equipped with the
σs(E′, E) topology, is E. The pair (E,E′) is a dual pair and, for a subspace F of
E, the following statements are equivalent (K othe, 1969, Section 20, Maeda and
Maeda, 1970, Chapter VII).

• F is closed for the given locally convex topology on E;
• F is E′-closed;
• F is closed for the weak linear topology σ (E,E′).
• F is closed for the weak topology σs(E,E′).
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If E is vector space then to every linear mapping f : E 
→ E there corresponds the
adjoint mapping f ∗ : E∗ 
→ E∗, where E∗ is the algebraic dual of E. If moreover
E is a locally convex space then the following statements are equivalent (K othe,
1969, Section 20, 4)

• f is continuous for the weak topology;
• f is continuous for the weak linear topology;
• f ∗(E′) ⊂ E′.

and the following locally convex version of Theorem 1 holds.
Theorem 2. Let E be a locally convex space and L its lattice of all closed
subspaces. The projection orthoposet P (L)) is isomorphic to the poset of weakly
continuous linear projections defined on E.

If E is metrizable (to be a Mackey space suffices) then a linear map-
ping f is continuous if an only if f is weakly continuous (Schaefer, 1966,
chap. IV, 7.4) and so, the orthomodular poset of projections of the lattice
of all closed subspaces of a metrizable locally convex space E is isomor-
phic to the orthomodular poset of continuous linear projections defined on E.
Normed spaces or inner product spaces are examples of metrizable locally convex
spaces.

A complete metrizable locally convex space is called a Fréchet space and, in
this case, all finite direct sums of closed subspaces are topological. Therefore, if
L is the lattice of closed subspaces of a Fréchet space E then

P (L) = {(A,B) ∈ L2 | A ∩ B = {0}, A ∨ B = E, (A,B)M∗}
= {(A,B) ∈ L2 | A ⊕ B = E}.

In this case, every linear projection with a closed kernel and a closed range is
continuous.

Examples of Fréchet spaces are Banach spaces and Hilbert spaces.

Example. Let H be an inner product space, L1 the lattice of all closed subspaces
of H and L2 the lattice of all ⊥-closed subspaces. In general, we have only
L2 ⊂ L1. The projection poset P (L1) is isomorphic to the orthomodular poset of
continuous projections on H and P (L2) is isomorphic to the orthomodular poset
of σ (H,H ) continuous projections. We recall that H is a Hilbert space if and only
if L1 = L2.

In the next section, we will generalize to DAC-lattices the main idea of
Ovchinnikov (1993): to determine the automorphism group of an orthoposet
of projections P (L) by means of automorphisms and antiautomorphisms of the
lattice L.
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4. AUTOMORPHISMS OF THE POSET OF PROJECTIONS
OF A DAC-LATTICE

We assume that all the DAC-lattices of this section have a height ≥ 4.

In a DAC-lattice L, an element is called a finite element when it is zero or
the join of a finite number of atoms. A dual finite element is a finite element
of L∗.

The set of all elements which are either finite or dual finite is a complemented
modular DAC-lattice denoted byF(L). For a finite element a ofF (L), let us denote
by h(a) its height; and if a is cofinite, h∗(a) is its height in L∗. If h(a) = n then
a has a complement b such that h∗(b) = n (Maeda and Maeda, 1970, Theorem
27.10) and, for every complement c of a, h∗(c) = n.

We recall that for a ∈ F (L) and b ∈ L (a, b)M , (b, a)M , (a, b)M∗ and
(b, a)M∗ hold (Maeda and Maeda, 1970).

If L is a DAC-lattice and n ∈ N, let us denote by Pn(L) the set of all projec-
tions (a, b) of L such that a is finite and h(a) = n. The elements of P1(L) are the
atoms of P (L) and elements of P2(L) cover atoms.

For two elements (a, b) and (c, d) of P1(L) we define, as in Ovchinnikov
(1993), a binary relation ∼ by

(a, b) ∼ (c, d) ⇔ a = c or b = d

The following lemma is the lattice version of Ovchinnikov’s Lemma 3.2 in Ovchin-
nikov (1993). In the proof, a <· b means a ≤ b and if a ≤ c ≤ b then a = c or
c = b.

Lemma 4. Let L be an irreducible complete DAC-lattice. If (a, b) and (c, d) are
two elements of P1(L) then (a, b) ∼ (c, d) if and only if {(a, b), (c, d)} has more
than one upper bound in P2(L).

If a �= c and b �= d let (e, f ) ∈ P (L) an upper bound of {(a, b), (c, d)}.
We have e ≥ a ∨ c and f ≤ b ∧ d. Therefore, if h(e) = 2 then e = a ∨ c

and f = b ∧ d. The pair {(a, b), (c, d)} has at most one upper bound in
P2(L).

Conversely, assume that (a, b) ∼ (c, d). If a = c and b �= d then b ∧ d <· b <

· 1 and b ∧ d <· d <· 1. Let p and q be atoms such that (b ∧ d) ∨ p = b and (b ∧
d) ∨ q = d. We have (b ∧ d) ∨ (a ∨ p) = ((b ∧ d) ∨ p) ∨ a = b ∨ a = 1 and, as
p ≤ b, (d ∧ d) ∧ (a ∨ p) = d ∧ [(d ∧ (a ∨ p)] = d ∧ [(d ∧ a) ∨ p] = d ∧ p =
0 since p �≤ d. Similarly, (b ∧ d) ∨ (a ∨ q) = 1 and (b ∧ d) ∧ (a ∨ q) = 0 and
thus (a ∨ p, b ∧ d) and (a ∨ q, b ∧ d) are two upper bounds of {(a, b), (c, d)} in
P2(L).

It remains to show that there exists q such that a ∨ p �= a ∨ q. As L is
complete and irreducible there exits more than one atom q such that (b ∧ d) ∨ q =
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d. If, for two different atoms q1 and q2, we have (b ∧ d) ∨ q1 = (b ∧ d) ∨ q2 = d

and a ∨ p = a ∨ q1 = a ∨ q2 then q1 ∨ q2 = a ∨ p and so

d = (b ∧ d) ∨ q1 ∨ q2 = (b ∧ d) ∨ a ∨ p = 1,

a contradiction. Therefore, there exists an atom q such that (b ∧ d) ∨ q = d and
a ∨ p �= a ∨ q.

The proof is similar if a �= c, b = d and if (a, b) = (c, d).

Proposition 3. (Ovchinnikov, 1993) Let L be an irreducible complete DAC-
lattice and φ an automorphism of the poset P (L). For (a, b) and (c, d) in P1(L),
(a, b) ∼ (c, d) is equivalent to φ((a, b)) ∼ φ((c, d)).

Proof: If φ is an automorphism of P (L) then φ(P1(L)) = P1(L) and φ(P2(L)) =
P2(L). Hence, by using Lemma 0, the proposition is proved. �

Lemma 5. Let L be an irreducible complete DAC-lattice, (a, b) and (c, d) two
elements of P1(L). The following statements are equivalent.

1. (a, b) �⊥ (c, d).
2. (a, d) ∈ P1(L) or (c, b) ∈ P1(L).
3. There exists (e, f ) ∈ P1(L) such that (a, b) ∼ (e, f ) and (e, f ) ∼ (c, d).

Proof: (1) ⇒ (2). If (a, b) �⊥ (c, d) then (a, b) �≤ (d, c) and thus a �≤ d or b �≥ c.
In the first case, (a, d) ∈ P1(L) and in the second case (c, d) ∈ P1(L).

(2) ⇒ (3). Obvious.
(3) ⇒ (1). If a = c or b = d then (a, b) �⊥ (c, d). Otherwise, if e = a then

f = d and if e = b then f = c. In the first case, a �≤ d and in the second case,
b �≥ c and (a, b) �⊥ (c, d) holds.

By using the previous characterization of the relation ⊥ we obtain the follow-
ing proposition which is the first step of the proof that every poset automorphism
of P (L) is actually an orthoposet automorphism. �

Proposition 4. Let L be an irreducible complete DAC-lattice and φ an auto-
morphism of the poset P (L). If (a, b) and (c, d) are two elements of P1(L) then
(a, b) ⊥ (c, d) if and only if φ((a, b)) ⊥ φ((c, d)).

A poset is called atomistic if every nonzero element is a join of atoms.

Lemma 6. If L is a DAC-lattice then P (L) is an atomistic poset.
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Let (a, b) be a nonzero element of P (L). For every atom p ≤ a let
qp be a coatom such that b ≤ qp and p ∧ qp = 0 (Such a coatom exists
since p �≤ b). Similarly, for every coatom q ≥ b let pq be an atom such
that pq ≤ a and pq ∧ q = 0. Consider X = {(p, qp) | p atom and p ≤ a} ∪
{(pq, q) | q coatom and b ≤ q}. We have X ⊂ P1(L) and (a, b) is an upper bound
of X. Let (x, y) be another upper bound of X, p ≤ a an atom and q ≥ b a
coatom. We have (p, qp) ≤ (x, y) and (pq, q) ≤ (x, y). Therefore, p ≤ x and
q ≥ y. Therefore, (a, b) ≤ (x, y) and

∨
X = (a, b).

Proposition 5. Let P be an atomistic orthoposet and φ an automorphism of the
poset P . If for two atoms p and q, p ⊥ q is equivalent to φ(p) ⊥ φ(q) then φ is
an automorphism of the orthoposet P .

Let x ∈ P and p, q two atoms such that p ≤ φ(x⊥) and q ≤ x. We have
φ−1(p) ≤ x⊥ ≤ q⊥ and therefore φ−1(p) ⊥ q. Hence, p ⊥ φ(q) and

∨
{p | p atom, p ≤ φ(x⊥)} ⊥

∨
{φ(q) | q atom, q ≤ x}.

We have φ(x⊥) ⊥ φ(x) that is φ(x⊥) ≤ φ(x)⊥. But x⊥ = φ−1φ(x⊥) ≤
φ−1(φ(x)⊥) ≤ (φ−1φ(x))⊥ = x⊥ and therefore x⊥ = (φ−1φ(x)⊥) and φ(x⊥) =
φ(x)⊥.

Proposition 6. Let L be an irreducible complete DAC-lattice. Every automor-
phism of the poset P (L) is an automorphism of the orthomodular poset P (L).

Proof: Use Lemma 6 and Propositions 4 and 5.
We denote by At(L) the set of all atoms of the poset L and by At∗(L) the

set of all coatoms. For every p ∈ At(L), let p ◦ = {(p, q) ∈ P1(L)} and for every
q ∈ At∗(L), ◦q = {(p, q) ∈ P1(L)}.

The next proposition is Theorem 2.1 of Ovchinnikov (1993) in the setting of
DAC-lattices. �

Proposition 7. Let L be an irreducible complete DAC-lattice and φ be an
automorphism of P (L). There exists a bijection f : At(L) 
→ At(L) such that,
for every atom p, φ(p ◦) = f (p) ◦ or there exists a bijection g : At(L) 
→ At∗(L)
such that, for every atom p, φ(p ◦) =◦ g(p).

Abbreviated proof. Let p ∈ At(L) and (p, q1), (p, q2) be two elements of p ◦

with q1 �= q2. By Proposition 3, we have

φ(p, q1) = (e, f1) and φ(p, q2) = (e, f2) (1) or φ(p, q1) = (e1, f ) and
φ(p, q2) = (e2, f ) (2)
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When the case (k), k = 1 or 2, is satisfied for (p, q1) and (p, q2) then this case is
also satisfied by any similar pair of projections and so, for a given automorphism
φ, there is only one case which occurs.

If for an automorphism φ the case (1) is satisfied then the correspondence
f , defined by f (p) = e, is a bijection of At(L) onto At(L) and if it is the second
case which occurs then the correspondence g such that g(p) = f is a bijection of
At(L) onto At∗(L).

Following the terminology of Ovchinnikov (1993), we say that the automor-
phism of P (L) is even if there exists a bijection f of the set atoms of L such
that, for every (p, q) ∈ P1(L), φ(p, q) = (f (p), q ′). In the other case, φ is called
odd.

Proposition 8. Let L be an irreducible complete DAC-lattice and φ an auto-
morphism of P (L).

If φ is even then there exist two bijections f1 : At(L) 
→ At(L) and f2 :
At∗(L) 
→ At∗(L) such that, for every (p, q) ∈ P1(L), φ((p, q)) = (f1(p), f2(q)).

If φ is odd then there exist two bijections f1 : At(L) 
→ At∗(L) and f2 :
At∗(L) 
→ At(L) such that, for every (p, q) ∈ P1(L), φ((p, q)) = (f2(q), f1(p)).

Proof: Assume that φ is even and let (p, q) ∈ P1(L). By Proposition 7,
there exists a bijection f1 : At(L) 
→ At(L) such that φ((p, q)) = (f1(p), q ′).
As φ is also an even automorphism of P (L∗), there exists a bijection f2 :
At(L∗) 
→ At(L∗) satisfying φ((q, p)) = (f2(q), p′) since (q, p) ∈ P1(L∗). But,
φ((q, p)) = φ((p, q))⊥ = (q ′, f1(p)) and therefore φ((p, q)) = (f1(p), f2(q)).
Since At(L∗) = At∗(L), the proof is complete.

If φ is odd the proof is similar. �

Proposition 9. Let L be an atomistic poset and f a bijection of At(L). The
following statements are equivalent.

1. There exists an automorphism f of L extending f .
2. For every nonzero element x ∈ L there exists y ∈ L such that

f ({p ∈ At(L) | p ≤ x}) = {p ∈ At(L) | p ≤ y}

Proof: (1) ⇒ (2) : clear.
(2) ⇒ (1) Let x �= 0 an element of L. The element y is unique and so we can
extend f to L by means of the mapping f defined by f (0) = 0 and f (x) = y.
Obviously, 0 ≤ x is equivalent to f (0) ≤ f (x) and, for two non zero elements x

and x ′, we have

x ≤ x ′ ⇔ {p ∈ At(L) | p ≤ x} ⊂ {p ∈ At(L) | p ≤ x ′}
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⇔ f ({p ∈ At(L) | p ≤ x}) ⊂ f ({p ∈ At(L) | p ≤ x ′})
⇔ {p ∈ At(L) | p ≤ f (x)} ⊂ {p ∈ At(L) | p ≤ f (x ′)}
⇔ f (x) ≤ f (x ′).

Remark that this proposition has a dual version related to bijections of the
set of coatoms �

Theorem 3. Let L be an irreducible complete DAC-lattice satisfying:

for every a ∈ L, there exists b ∈ L such that (a, b) ∈ P (L). (C)

For every automorphism φ of the poset P (L) there exits

1. an automorphism f of L such that φ((a, b)) = (f (a), f (b)), (a, b) ∈
P (L), if φ is even,

2. an antiautomorphism g of L such that φ((a, b)) = (g(b), g(a)), (a, b) ∈
P (L), if φ is odd.

Conversely, if f is an automorphism of L then φ : P (L) 
→ L × L defined
by φ((a, b)) = (f (a), f (b)) is an even automorphism of P (L) and if g is
an antiautomorphism of L then ψ : P (L) 
→ L × L defined by ψ((a, b)) =
(g(b), g(a)) is an odd automorphism of P (L).

Sketch of the proof. Assume that φ is even. By Proposition 8 there exist two
bijections f1 : At(L) 
→ At(L) and f2 : At∗(L) 
→ At∗(L) such that, for every
(p, q) ∈ P1(L), φ((p, q)) = (f1(p), f2(q)). By using condition (C) and Proposi-
tion 9 f1 can be extended to an automorphism f1 of the poset L. Similarly, f2 has
an extension f2.

The correspondence (a, b) ∈ P (L) 
→ (f1(a), f2(b)) is an automorphism
of P (L) which agrees with φ on P1(L). Therefore, for every (a, b) ∈ P (L),
φ((a, b)) = (f1(a), f2(b)). This equality is also true for (a, b) = (0, 1).

As φ is also an automorphism of P (L), we have φ((a, b)⊥) = (φ((a, b)))⊥

that is (f1(b), f2(a)) = (f2(b), f1(a)) and so f1 = f2.
The proof is similar if φ is odd.
For the converse, Proposition 5 shows that it suffices to prove that (a, b) ∈

P (L) implies (f (a), f (b)) ∈ P (L) for every automorphism f and (g(b), g(a)) ∈
P (L) for for every antiautomorphism g. But, these implications are an easy con-
sequences of the equivalence:

(a, b)M ⇔ ∀x ∈ L, ((x ∧ b) ∨ a) ∧ b = (x ∧ b) ∨ (a ∧ b)

and

(a, b)M∗ ⇔ ∀x ∈ L, ((x ∨ b) ∧ a) ∨ b = (x ∨ b) ∧ (a ∨ b).
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Remarque. The condition (C) of the previous theorem is satisfied if L is the
lattice of all subspaces of a vector space or if L is an orthomodular lattice. This
last case contains the case of the lattice of all closed subspaces of a Hilbert
space H and in this case Theorem 3 is the main result of Ovchinnikov (1993).
To replace H by a Banach space does not add new examples as a Banach space
with the property that every closed subspace is complemented is isomorphic to
a Hilbert space (Lindenstrauss and Tzafriri, 1971; see Plighko and Yost, 2000
for an interesting discussion about the problem of the existence of complemented
closed subspaces in Banach spaces). On the other hand there exist Banach spaces
with the property that the only complemented closed subspaces are the finite-
dimensional or cofinite-dimensional subspaces (see Plighko and Yost, 2000 for
references).
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